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Machine learning is becoming increasingly popular in economics as it can be used as a tool to
make accurate predictions of human behavior. This paper analyzes a select few notable examples,
explaining the processes involved from a computer engineering point of view. An “operational
definition of machine learning” is introduced first, then the position of machine learning as a
subset of research on artificial intelligence is clarified. An overview of how machine learning can
be used to process and interpret big data is then given and accompanied by introductory paragraphs
detailing the inner workings of relevant modeling approaches.

This writing sample was originally authored in 2019 and is published, together with other works,
in a book with the aim of contributing to the public understanding of science, written for a non-
technical audience. It is assumed that readers have an undergraduate-level knowledge of calculus
and linear algebra. The original citation is Frick, K. M. (2020). What can economists learn from
machine learning? In Astrazioni stenografiche. Concetti chiave per vivere consapevolmente la
nostra società. Bononia University Press. ISBN 978-88-6923-676-1. Some citations have been
updated, e.g. in the case of working papers that have since been published.

1 Introduction to machine learning

Athey (2018) provides an “operational definition of machine learning”, defining it as a “field that
develops algorithms designed to be applied to datasets”. This definition is useful as a starting
point to explore what machine learning can be used for. Some of its main subfields are pattern
recognition (e.g. classifying pictures), reinforcement learning (e.g. automatically developing a
robot control system) and natural language processing (e.g. translating ambiguous and context-
dependent sentences). Moreover, applications of machine learning to policy analysis problems
(e.g. estimating the impact of a public transport cost cut on air pollution levels) are particularly
interesting to economists (Kleinberg, Ludwig, Mullainathan, & Obermeyer, 2015).

Many machine learning algorithms are able to not only discover a wide array of nonlinear relation-
ships in big data but to actively strive to reduce the complexity of the model they are generating
in order to make it easier for a human being to understand these relationships. Machine learning
models, however, have their limits too. As both statisticians and economists know, correlation does
not imply causation. Causation, however, is what economists are most interested about: gauging
policy effects or evaluating market fluctuations require causal inference. However, research on
machine learning has, for the most part, focused on prediction on historic datasets (Mackenzie,
2015).
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One of the applications of machine learning that is enjoying huge popularity today is using such
algorithms as a tool for predicting human behavior when confronted with different situations. The
reasons machine learning is so widely used are easy to infer: big samples of data are much easier
to come by than big samples of people, as well as faster to study and free of consequences on
real society. Moreover, machine learning allows researchers to experiment on a variety of samples
from around the world since, thanks to the Open Data phenomenon, many public and private
entities are releasing data on their operations that is constantly being updated and added upon.
Kosinski, Stillwell, and Graepel (2013) used common statistical methods such as logistic regression
to predict, with surprising accuracy (more than 85% in all cases), sexual orientation, ethnicity and
position on the political spectrum of volunteers based on Facebook likes, demographic profiles and
results of psychometric tests. These kind of data are, by default and except for psychometric tests,
publicly available.

Machine learning models outperform traditional structural models and can learn some “irrational”
human behavior, such as adversity to risk, ambiguity and incomplete information.

Machine learning models can also be used to compensate for the absence of a control group.
Varian (2014) argues that predictions for “what would have happened without intervening” (e.g.
changing a policy) made on the basis of an applied machine learning model can be even better than
a control group because it can take into account spurious variables (e.g. the effects of differing
weather between two cities on sales) that a control group cannot.

2 Lasso and ridge regression

Lasso and ridge regression are two subsets of regularized regression. In a model with P predictor
variables whose associated weights are b, regularized regression is carried out by imposing a penalty
term of the form (1−α)λ∥b∥+αλ∥b∥2 and then trying to minimize the sum of this term and the
sum of squared residuals. This method is called elastic net regression, of which lasso (least absolute
shrinkage and selection operator) regression is a special case where α = 0 and ridge regression is
a special case where α = 1. These methods attempt to reduce the number of non-zero regression
coefficients (Varian, 2014) in order to reduce complexity, leading to a model with less overfit (and
thus better out-of-sample performance) that is more easily interpreted by a human.

There is also a numerical computing interpretation of regularization. A problem is said to be
ill-posed if it requires the inversion of an “almost-singular” matrix, which has small eigenvalues. A
“measure of singularity” is the condition number, which given a matrix A is the product ∥A−1∥∥A∥
for a self-consistent norm ∥ · ∥1. Therefore, if A has small eigenvalues, since those of A−1 are their
reciprocals, they will be large, so the condition number will also be large and the problem will be ill-
posed. In linear regression, if the data matrixX is such that the matrixXTX has small eigenvalues,
the calculation of the weight vector b = (XTX)−1XTy will be ill-posed. Adding regularization
means having a different expression for the weight vector, that is b = (XTX + λI)−1XTy in the
case of ridge regression, which means that a value λ is added to each diagonal element of the
matrix, making eigenvalues larger and lowering the condition number, making the problem less
ill-posed.

The computational complexity of lasso and ridge regression is very low: given a dataset of size

1A self-consistent norm satisfies ∥A−1∥∥A∥ ≥ ∥A−1A∥
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n and a model with m features, the computational complexity is O(m3 +m2n) 2 (Efron, Hastie,
Johnstone, Tibshirani, & others, 2004) for both models. This means that regularized regression
becomes slower and heavier very quickly when increasing the number of parameters of the model,
but scales much better with data set size. This is definitely a plus for a model to be used in big
data analysis. This also means that such a model can be used on lower-powered devices such as
mobile phones, on smaller datasets and with fewer features, without draining the battery, thus
making it feasible to implement machine learning inside consumer applications.

2.1 Learning risk- and ambiguity-averse behavior

Peysakhovich and Naecker (2017) published a comparison between traditional economic models
in the domain of risk (where the outcome of an event is uncertain, but the observer has full
information about its probability distribution) and in the domain of ambiguity (where the outcome
of an event is uncertain and the observer can only estimate it based on given data). The paper
builds its dataset using Amazon Mechanical Turk (MTurk), a crowdsourcing platform that allows
researchers to hire human workers to perform certain tasks: for example, in this case, rating how
likely they would be to play certain games of chance. MTurk is widely used in economic literature
and there is substantial evidence that MTurk datasets are just as representative, if not more so
(Paolacci & Chandler, 2014), than traditional datasets. Participants were given instructions about
the experiment, which required them to enter a numerical value that represented their “willingness
to play” a certain lottery; a lottery was defined as an urn containing some red, green and blue
balls, totaling 100. Each color had an associated monetary prize. Participants were then asked to
complete a comprehension quiz and data from those who answered incorrectly were not considered
in the final sample. This led to a final sample size of 315 people. This sample was then split into
a training set (70%) and a test set (30%). Splitting data into a training and a test set in order
to counteract in-sample overfitting is standard practice in machine learning literature and will be
mentioned several times throughout this paper.

The paper uses regularized regression methods as their machine learning algorithm, which are very
basic by themselves, only being able to uncover linear relationships. In order to allow their models
to discover non-linear patterns, they perform basis expansion on their predictors, that is they apply
a family of transformations to the features in order for the fitted model to be a non-linear function.

The authors show that in the domain of risk machine learning models are able to rediscover
the expected utility model with probability weighting (EUP) and perform just as well as the
model itself in terms of average squared error, which was the metric used to gauge prediction
accuracy throughout the paper. In the domain of ambiguity, however, regularized regression not
only outperforms traditional economic models, but is also able to learn human ambiguity-aversion.
The example proposed in the paper is that of two lotteries, with the same payoff, one having 50%
odds of winning and the other having uniformly drawn odds in [0, 1] with an average of 50%:
humans prefer the first and machine learning is able to predict this behavior. This also highlights
how machine learning is not only useful as a prediction tool but can also be used to advance
and improve current economic models, for example in this case by taking into account ambiguity
aversion.

Another point heavily driven home throughout the paper is the method used to evaluate machine

2A detailed explanation of big-O notation is outside the scope of this paper. It can be interpreted as an upper
bound for the number of mathematical operations required to compute an algorithm.
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learning algorithms for out-of-sample accuracy instead of in-sample fit: traditional statistical
evaluation of models tends to err on the side of overfitting. However, training the machine learning
model on only part of the available data allows for testing its accuracy on the remainder, thus
heavily penalizing models that can have high in-sample accuracy but are terrible predictors when
used on different data from the ones it was trained on - like real world data (Kohavi, 1995).

3 Decision trees

A problem which requires predicting a true/false outcome y based on a set of explanatory variables
(called features in machine learning) is known as a binary classification problem. The goal of
decision tree learning is to construct a tree that leads to a decision about how to classify the
observation (Hastie, Tibshirani, & Friedman, 2013). A graphical explanation of how decision trees
are built is best applied to the case of binary trees (i.e. every non-leaf node of the tree has two
children) and two explanatory variables. Consider the dataset as a scatter plot of points in the
variables x1 and x2 and a continuous response y. The first decision partitions the space into two
regions A and B according to the mean value of y. The second decision partitions A into A1
and A2 and B into B1 and B2 according to the same rule. One or more of these regions are
finally partitioned again and then some stopping rule terminates the algorithm. This results in
the partition plots and decision tree depicted in our elaborations, fig. 1c fig. 1d.

The restriction to binary trees is usually preferred because of computational efficiency considera-
tions and this case can, of course, be generalized to an arbitrary number of predictors. A decision
tree is easily interpreted by a human and the most and least important factors in deciding whether
to predict “true” or “false” can be discerned by simply reading which predictors are or are not used
by the decision tree. Moreover, tree models are able to uncover more subtle relationships between
data: a simple regression might find a linear or polynomial relationship between a variable and a
feature, while a tree could show that only extremely high or low values of that feature alter the
variable and that the feature has no influence when its value is in the middle of its range (Quinlan,
1990). Tree models, however, tend to overfit and grow too much trying to cover every variation
on the training dataset. To counteract this tendency, trees are usually pruned by imposing a cost
for complexity, which in turn is usually defined as the number of terminal nodes (leaves) (Kim &
Koehler, 1995).

3.1 Initial play in matrix games

The field of game theory has a wide array of applications, from the military (Haywood, 1954) to
sales and management (Saloner, 1991). One of the most common models in game theory is the
normal form game, or matrix game. In a two-player matrix game, the row and the column player
are both given the same matrix that outlines the expected payoffs (which can be negative) for
both players’ choices. The two players then make their choices at the same time, or otherwise
without knowing the other player’s choice before making theirs. If one player could predict the
other player’s action with reasonably more certainty than random guessing, they could have a
better chance at making the best choice they can to maximize their payoffs.

While standard game-theoretical models rely on the assumption of common knowledge of ratio-
nality (everyone is fully rational and everyone knows it), in the last decades behavioral economists
have developed alternative models that relax this assumption for the sake of psychological realism
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(a) First scatter plot partition.
(b) Second partition.

(c) Third partition.

(d) Resulting decision tree.

and predictive accuracy. Level-k play (Nagel, 1995) is one of these models. In level-k play, a player
is said to be level-0 if they choose their behavior ignoring the information they have on the other
players and act randomly. A level-1 player assumes the other players are level-0 and chooses the
play that maximizes expected payoff under this hypothesis. Reasoning inductively, for any value
of k, level-k players are those who assume their opponents are level-(k− 1) and act accordingly. A
textbook example of level-k reasoning are the possible strategies for the Keynesian beauty contest,
in which players are asked to choose a number and rewarded according to how close the number is
to a certain fraction of the average of the other players’ choices. If participants are asked to choose
a number between 1 and 100, and rewarded if their number is close to half the average of the other
players’ choices, level-0 players will pick such a number at random from a uniform distribution;
level-1 players will know that the average of a uniform distribution between 0 and 100 is 50 and
will therefore pick 25 as their guess; level-2 players will assume everyone else is picking 25 and will
therefore pick 13, and so on and so forth.

Level-1(α) play (Fudenberg & Liang, 2019) is a variation of level-1 play which accounts for human
risk aversion by choosing the action that corresponds to level-1 play on a game whose payoffs are
a real-valued root of those of the original game: for every payoff u, this kind of play considers a
payoff f(u) = uα, α < 1. When the game has actions whose payoffs are close to those of the level-1
action but have lower variation, this kind of play achieves better accuracy than standard level-1.
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Fudenberg and Liang (2019) tried using machine learning algorithms to predict which of various
strategy profiles best fits any given game, then using that model to predict the row player’s initial
play. The games participants were asked to play were generated in different ways: for the intial
dataset, 86 games were selected from six game theory papers; afterwards, after noticing that level-
1(α) play was a very good predictor of human behavior, achieving 89% accuracy, when ran on a
different set of games with randomly-generated payoffs, the authors noted that it would be more
efficient to focus on games where level-1(α) was not a good predictor. To this end, the paper
details how these games were generated: a rule was first trained to predict how often level-1(α)
play would be preferred by human players, then random games were generated and those where
more than 50% of players would follow this model were discarded until a dataset of 200 games had
been generated.

After generating these games, the authors used MTurk to assign 40 players to each game and
analyzed the data, confirming their prediction that level-1(α) play would not do a good job of
predicting initial play in such games.

On their first test run the authors find that a bagged decision tree is able to discover the same
human ambiguity-aversion pattern covered in Peysakhovich and Naecker (2017) by predicting that
a play with similar expected payoff but lower variation is preferred to one with higher variation,
even if the first one is the level-1 action. The paper continues by using machine learning to generate
games where level-1(α) is not accurate in order to uncover further hidden patterns.

Training a decision tree on a dataset with randomly generated games leads to a tree that splits
games into four classes. The first two classes always predict the Nash equilibrium as initial play;
the latter two predict adherence to level-1(α) play. This tree results in 79% accuracy and 69%
completeness, which is better than either always predicting either Nash or level-1(α).

4 Bagged trees, random forests and gradient boosting

A very popular technique for improving the quality of machine learning predictions is using model
ensembles (Karpathy, 2019) that is averaging the inferences from multiple models which can even
be trained on different datasets. Some common ensembles of decision tree models are bagged trees,
random forests and boosted trees.

As mentioned, decision trees can grow too much and overfit the dataset if they are not effectively
pruned. Aside from pruning, another technique that helps deal with overfitting is bagging. This
technique has its roots in the statistical practice known as bootstrapping (Breiman, 1996), that is
drawing with replacement multiple samples from a dataset, which might be even bigger than the
dataset itself. A decision tree is then fitted on each sample and the resulting predictions are finally
averaged or majority-voted.

Random forest building (Biau & Scornet, 2016) is a more complex machine learning algorithm
which uses multiple, unpruned trees that are restricted to use a randomly chosen subset of the full
set of predictors. To classify an observation, a majority vote is used in the case of classification
and an average in the case of regression. Random forests, unlike trees, are harder to interpret
as the number of trees is usually in the thousands. They can, however, still offer useful insight
about which variables contribute the most to prediction accuracy. Random forests can be seen as
a special case of a bagged tree in which each subtree is restricted to only use a subset of features
for its classification or regression.

6



Gradient boosting (Hastie et al., 2013) is a third, fundamentally different method of dealing with
overfitting trees using an ensemble of “weak decision trees” trained on altered datasets that give
greater weight to data points that have been misclassified by other “weak” trees. Gradient boosting
starts from a very inaccurate model (e.g. as inaccurate as f0(x) = ȳ, that is always predicting the
mean value of the dependent variable) and fits a decision tree on the error function L(y, f0(x)). The
resulting piecewise function hk(x,L) is added to the previous “weak” estimator, so the recursive
formula becomes fk+1(x) = fk(x) + hk(x,L(x, fk(x)). The final output is, like in random forests
and bagged trees, a majority vote or an average between all outputs.

4.1 The impact of minimum wage on salaries

There is a vast literature on the effects of minimum wage laws but no ultimate consensus on its
effects, both on employment and actual quality of life of the affected workers. In fact, in 2017 two
studies analyzed Seattle’s minimum wage laws and reached polar opposite conclusions: University
of Washington’s found it was “costing jobs” while UC Berkeley’s concluded it “hasn’t cut jobs”
(Gill, 2018). Therefore, even leaving ethical concerns and arguments aside, it is difficult for poli-
cymakers to decide whether to implement, raise or lower minimum wages. Most American studies
on the effects of minimum wage laws have historically focused on what happened to minimum
wage jobs. For example, more than half of the people who work for minimum wage or less have
jobs in the food preparation industry (Gill, 2018). This, however, tends to shift the focus from
the effects on people to the effect on jobs. It is tautological that minimum wage jobs are affected
from minimum wage laws, but these jobs may be held by different individuals before and after the
implementation of the policy.

A better question might be “which demographics are more likely to work for minimum wage?”
which is the question that Cengiz, Dube, Lindner, and Zentler-Munro (2021) tries to answer. The
paper uses machine learning tools to build a prediction model able to build samples containing the
same number of minimum wage workers as commonly used samples, but less non-minimum wage
workers. The author uses data from the 1996-2017 CPS-Outgoing Rotation Group (CPS-ORG).
The predictors used in training decision trees are age, education, citizenship, gender, population
density of area of residency, marital status, ethnicity, and whether or not an individual has served
in the US military forces. The whole dataset is divided into three samples: training, test and
left-out. The left-out sample, composed of all remaining observations, is not used in the paper but
only for unrelated estimations.

In the training sample, the author excludes those who have jobs where receiving tips is the norm as
well as those who are from states that received a minimum wage increase in the last year (in order
to only test on environment where the job market has adjusted). The test sample is composed of
the whole set of observations in states that did receive a minimum wage increase in the subsequent
year and that are not present in the training sample. This is a form of “data set manufacturing”
that is usually actively avoided in machine learning literature. However, in this case the model
performing well on markets that did not receive minimum wage hikes means that it is not taking
into account these hikes and therefore it should not matter whether these are or are not present
in the test set; if they are not, and the model fits well in the test set, predictions can be regarded
as being more robust if anything. Moreover, the author notes that a different composition of the
data sets, using ten-fold cross-validation, leads to very similar conclusions.

The data are divided into mutually exclusive subgroups and sorted by the smallest probability a
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member of each subgroup has to be a minimum-wage worker. Three bigger groups are formed
from these subgroups: the high-impact group, the baseline group and the no-impact group. Wage
and employment effects of the minimum wage are then analyzed on these three groups, discovering
that both the high-impact and the baseline groups report a large and statistically significant effect
on wages but no effects on employment.

One interesting finding is that there is a negative correlation between the probability of being a
minimum wage worker and both the percent of women and the percent of people of “non-Caucasian
ethnicity” in the considered subgroup.

4.2 Bail decisions

Both computer scientists and economists are used to “abstracting away” the complexity of reality
by devising and studying mathematical models that allow for isolating variables of interest. Models
of human behavior, however, are not some kind of abstraction that crumbles when taken out of
a lab; on the contrary, they have immediate applications to issues of interest to policymakers
(Kleinberg et al., 2015).

For example, every day, judges all over the world are requested to make what amounts to a very
specific and very important prediction of human behavior: should they release the defendants that
stand before them, will those defendants flee the country, commit other crimes, or just go on with
their lives and wait for their trial, appearing in court when called upon? This is not a matter
of crime and punishment; in fact, the trial has not been carried out yet and police investigations
might not even be over. The judge only knows the defendant’s criminal history and some personal
details, so any kind of correlation is not immediately obvious and, more importantly, there is no
need to establish a causal relationship - since there either is none, or it is obvious - but only to
predict somebody’s behavior and act accordingly.

Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan (2017) tackled precisely this case. The
authors obtained a dataset of 758027 arrests made in New York City between 2008 and 2013
for which judges had to decide whether to release or jail while waiting for the trial. They then
used gradient-boosted decision trees to predict how high the risk is that the defendant will fail to
appear in court (FTA) and analyze the results in order to devise a rule that can help judges reduce
FTA rates making use of their algorithm. Decision trees’ hyperparameters such as tree depth
are selected using five-fold cross-validation. k-fold cross validation is another common practice in
machine learning: the dataset is divided into k subsets, known as “folds”, then parameters (or,
in this case, hyperparameters) are estimated using k − 1 folds as training data and the remaining
fold as test data. The process is repeated k times and results are then averaged.

The authors’ decision trees are then trained only using data that is strictly related to the case,
such as criminal records and previous FTAs, and the only unrelated feature is age at the time of
arrest. Two glaring issues are evident from these two statements: first, we can only know FTAs
from released defendants, but we cannot know what a jailed defendant would have done if released;
second, the devised models only use administrative data but the judge does not, which might lead
to training - and therefore prediction - issues. The authors use gang tattoos as an example: if
many people who have gang tattoos are young, and judges tend to always jail people with gang
tattoos as they are considered high-risk, depending on how the loss function is constructed decision
trees might erroneously decide to jail all young people or, conversely, to release them even though
a judge would jail them, because they do not know about gang tattoos.
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These two issues are related since, if we assume that judges take into account variables that are
unobserved by the algorithm, we cannot assume FTA rates of released defendants to be indicative
of anything concerning jailed defendants with similar observed predictor variables. This is known
as the selective labels problem and is tackled by exploiting its one-sidedness: it is easy to know
what would have happened if a released defendant had been jailed. Since what the authors are
interested in is influencing a decision, one way judges could be instructed to use their algorithm
is to jail those that they would have released but are predicted to have a high risk of FTA: the
data show that high-risk defendants are released much more often that they would if judges acted
“rationally” and jailed everybody with a high predicted FTA risk. These people could in principle
be low-risk, and the judges might realize this and release them, but relating observed FTA rates
to predicted risk shows that defendants that are predicted to be high-risk do have a high observed
FTA rate.

This kind of analysis does not take into account the cost implied by jailing defendants and only
influences decisions on the basis of FTA risk. However, trying to draw a correlation between
judge jailing rate and defendant characteristics does not lead to any kind of consistent finding (in
statistical terms, drawing a histogram of p-values of F -test statistics does not show any unusual
mass at low p-vaues). Therefore, if the average judge were to use the algorithm this way, it
would be possible to maintain the same FTA rate jailing only 48.2% as many people, or get FTA
reductions that are 75.8% larger by jailing more people. By assuming unobservable variables have
no effect, the algorithm could reduce FTAs by 24.7% without incrementing jailing rate, or reduce
the detention rate by 41.9% without incrementing FTA rate.

These results seem to suggest that judges are making mistakes in their predictions, or decisions.
Therefore, the authors then move on to try and explain what is causing these mispredictions.
The first interesting finding is that judges with higher jailing rate are detaining more low-risk
people, so a judge being “stricter” does not necessarily mean they are “better”. Continuing along
this line, the authors notice that judges struggle much more with high-risk cases, treating them
as if they were low-risk and heavily weighing their decision based on the current offense which
caused the defendant to be arrested. One possible explanation for both issues is that judges select
on variables that are not observed by the algorithm, and righfully so: drawing from behavioral
science literature, the author hypothesize that human judges overweigh interpersonal information,
such as the degree of eye contact being made. Still, the authors do not manage to fully explain the
source of judicial error: unobservable variables can only explain about a quarter of the difference
between the judges’ release decisions and the arguably better ones made by the algorithm.

5 Conclusions

Machine learning is not simply a faster way to analyze data or an evolution in spreadsheet tech-
nology. The fact that machine learning algorithms are able to re-discover traditional economic
models means that knowledge of these algorithms is now as valuable as the models themselves in
an economist’s set of tools. Beyond that, machine learning can help economists combine existing
models or develop new ones in order to be able to both make better predictions and understand
why those predictions work.

Moreover, machine learning is not only useful as a model but also as a way to identify causal
relations, which play a fundamental role in policy applications, with more certainty thanks to
samples that are more representative or novel ways to set up a study. This does not mean that the
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field of economics will be absorbed into that of machine learning but rather that any new research
should take into account the possibilities offered by these tools which can help economists get their
results not only faster but also more reliably.
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